首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5356篇
  免费   492篇
  国内免费   55篇
电工技术   66篇
综合类   29篇
化学工业   1123篇
金属工艺   76篇
机械仪表   272篇
建筑科学   106篇
矿业工程   6篇
能源动力   332篇
轻工业   769篇
水利工程   69篇
石油天然气   30篇
武器工业   1篇
无线电   695篇
一般工业技术   1228篇
冶金工业   82篇
原子能技术   72篇
自动化技术   947篇
  2024年   15篇
  2023年   200篇
  2022年   364篇
  2021年   737篇
  2020年   460篇
  2019年   516篇
  2018年   473篇
  2017年   391篇
  2016年   393篇
  2015年   243篇
  2014年   288篇
  2013年   421篇
  2012年   237篇
  2011年   293篇
  2010年   164篇
  2009年   142篇
  2008年   99篇
  2007年   91篇
  2006年   36篇
  2005年   26篇
  2004年   35篇
  2003年   26篇
  2002年   19篇
  2001年   11篇
  2000年   16篇
  1999年   16篇
  1998年   20篇
  1997年   10篇
  1996年   13篇
  1995年   15篇
  1994年   10篇
  1993年   13篇
  1992年   9篇
  1991年   14篇
  1990年   4篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1973年   3篇
  1967年   3篇
  1965年   2篇
排序方式: 共有5903条查询结果,搜索用时 328 毫秒
991.
Food Science and Biotechnology - Recently, considerable attention has been paid to drug exploration from natural sources for treating memory loss, a major manifestation of various neurodegenerative...  相似文献   
992.
Polyphenols as phytochemicals have gained significant importance owing to several associated health benefits with regard to lifestyle diseases and oxidative stress. To date, the development of a single standard method for efficient and rapid extraction of polyphenols from plant matrices has remained a challenge due to the inherent limitations of various conventional extraction methods. The exploitation of polyphenols as bioactive compounds at various commercial levels has motivated scientists to explore more eco‐friendly, efficient, and cost‐effective extraction techniques, based on a green extraction approach. The current review aims to provide updated technical information about extraction mechanisms, their advantages and disadvantages, and factors affecting efficiencies, and also presents a comparative overview of applications of the following modern green extraction techniques—supercritical fluid extraction, ultrasound‐assisted extraction, microwave‐assisted extraction, pressurized liquid extraction, and pressurized hot water extraction—as alternatives to conventional extraction methods for polyphenol extraction. These techniques are proving to be promising for the extraction of thermolabile phenolic compounds due to their advantages over conventional, time‐consuming, and laborious extraction techniques, such as reduced solvent use and time and energy consumption and higher recovery rates with lower operational costs. The growing interest in plant‐derived polyphenols prompts continual search for green and economically feasible modern extraction techniques. Modern green extraction techniques represent promising approaches by virtue of overcoming current limitations to the exploitation of polyphenols as bioactive compounds to explore their wide‐reaching applications on an industrial scale and in emerging global markets. Future research is needed in order to remove the technical barriers to scale‐up the processes for industrial needs by increasing our understanding and improving the design of modern extraction operations.  相似文献   
993.
The occurrence of nocardial mastitis, mostly in the context of outbreaks, has been reported in many countries. However, there is a paucity of reports regarding detailed characterization of Nocardia cyriacigeorgica from bovine mastitis. Thus, herein we report characteristics, antimicrobial susceptibility patterns, molecular identification, and pathogenicity of N. cyriacigeorgica isolated from an outbreak of clinical mastitis in a dairy herd in northern China. A total of 182 (80.2%) lactating cows had clinical mastitis with severe inflammation and firmness of the udder, reduced milk production, and anorexia, with no apparent clinical response to common antibiotics. Out of 22 mastitic milk samples submitted to our laboratory, 12 N. cyriacigeorgica were isolated and characterized using standard microbiological analysis, 16S rRNA gene sequencing, random amplified polymorphic DNA PCR analysis, biochemical assays, and antibiotic susceptibility testing. Additionally, in vivo experiments were done to determine pathogenicity of these clinical mastitis isolates. All isolates were resistant to ampicillin, amoxicillin-clavulanic acid, ciprofloxacin, minocycline, rifampicin, and aminoglycosides (type VI pattern). Additionally, intramammary inoculation of mice with N. cyriacigeorgica caused chronic inflammatory changes, including hyperemia, edema, and infiltration of lymphocytes and neutrophils, as well as hyperplasia of lymph nodules in mammary glands. Therefore, we concluded that N. cyriacigeorgica was involved in the current outbreak of mastitis. To our best knowledge, this is the first report to characterize N. cyriacigeorgica isolated from cases of bovine mastitis in China.  相似文献   
994.
This work presents the first electrical and optical measurements of the initial phase of hydrogen discharge in the upgraded spherical tokamak GLAST-III, initiated with electron cyclotron heating(ECH). Diagnostic measurements provide insights into expected and unexpected physics issues related to the initial phase of discharge. A triple Langmuir probe(TLP) has been developed to measure time series of the floating potential, plasma electron temperature and number density over the entire discharge, allowing monitoring of the two phases of the discharge: the ECH pre-ionization phase following by the plasma current formation phase. A TLP has the ability to give time-resolved measurements of the floating potential(V_(float)), electron temperature(T_e) and ion saturation current(I_(sat)∝n_e√kT_e).sat e eThe evolution of the ECH-assisted pre-ionization and subsequent plasma current phases in one shot are well envisioned by the probe. Intense fluctuations in the plasma current phase advocate for efficient equilibrium and feedback control systems. Moreover, the emergence of some strong impurity lines in the emission spectrum, even after only a few shots, suggests a crucial need for improvements in the base vacuum level. A noticeable change in the shape of the temporal profiles of the floating potential, electron temperature, ion saturation current(I_(sat)) and light emission has been observed with changing hydrogen fill pressure and vertical magnetic field.  相似文献   
995.
Response surface methodology(RSM) was used to determine the optimum conditions of the methanolysis of crude poppy seed oil using Na OCH3 as catalyst. The experiments were run according to five levels, four variable central composite rotatable design(CCRD) using RSM. The reaction variables, i.e., molar ratio of methanol/oil(3:1–9:1), catalyst concentration(0.5 wt%–1.25 wt% Na OCH3), reaction temperature(25–65 °C), and reaction time(20–90 min) were studied. We demonstrated that the molar ratio of methanol/oil, catalyst concentration,and reaction temperature were the significant parameters affecting the yield of poppy seed oil methyl esters(PSOMEs). The optimum transesterification reaction conditions, established using the RSM, which offered a89.35% PSOME yield, were found to be 7.5:1 molar ratio of methanol/oil, 0.75% catalyst concentration, 45 °C reaction temperature, and 90 min reaction time. The proposed process provided an average biodiesel yield of more than 85%. A linear correlation was constructed between the observed and predicted values of the yield.The gas chromatography(GC) analyses have shown that PSOMEs contain linoleic-, oleic-, palmitic-, and stearic-acids as main fatty acids. The FTIR spectrum of the PSOMEs was also analyzed to confirm the completion of the transesterification reaction. The fuel properties of the PSOMEs were discussed in light of biodiesel standards(ASTM D 6751 and EN 14214).  相似文献   
996.
To prevent CO_2 accumulation in the atmosphere generated from scorching of fossil fuels, carbon capture and sequestration(CCS) technology is considered as a potential route to mitigate the emissions of CO_2 from reaching the atmosphere. Power generation from sources such as gas, coal and biomass can fulfill the energy demand more readily than many other sources of electricity production. Thus these sources may be retained as important alternative option in the global energy cycle. In order to curtail CO_2, porous aramid network was fabricated by the condensation of 1,3,5-benzenetricarbonyl trichloride and 1,3-phenylenediamine in 1,4-dioxane solvent. Aramid was characterized for various analyses including FTIR, XRD, TGA, BET surface area and pore size analysis, FESEM and CO_2 adsorption measurements. Excellent thermal stability was provided by strong amide linkages in the polymer backbone. Optimum CO_2 uptake of aramid was achieved to be 23.14 mg·g~(-1) at 273 K at 0.1 MPa. The basic amide groups of network structure showed greater affinity for CO_2.Excellent thermal stability of aramid makes it a promising sorbent for CO_2 capture in adverse conditions.  相似文献   
997.
Recently ionic liquids(ILs) are introduced as novel dual function gas hydrate inhibitors. However, no desired gas hydrate inhibition has been reported due to poor IL selection and/or tuning method. Trial error as well as selection based on existing literature are the methods currently employed for selecting and/or tuning ILs. These methods are probabilistic, time consuming, expensive and may not result in selecting high performance ILs for gas hydrate mitigation. In this work, COSMO-RS is considered as a prescreening tool of ILs for gas hydrate mitigation by predicting the hydrogen bonding energies(E_(HB)) of studied IL inhibitors and comparing the predicted E_(HB) to the depression temperature(?) and induction time. Results show that, predicted EHBand chain length of ILs strongly relate and significantly affect the gas hydrate inhibition depression temperature but correlate moderately(R = 0.70) with average induction time in literature. It is deduced from the results that, ? increases with increasing IL EHBand/or decreases with increasing chain length. However, the cation–anion pairing of ILs also affects IL gas hydrate inhibition performance. Furthermore, a visual and better understanding of IL/water behavior for gas hydrate inhibition in terms of hydrogen bond donor and acceptor interaction analysis is also presented by determining the sigma profile and sigma potential of studied IL cations and anions used for gas hydrate mitigation for easy IL selection.  相似文献   
998.
Green tea (GT)‐derived catechins; epigallocatechin gallate (EGCG) in particular are commonly used nutraceuticals for their free‐radical scavenging activity (FRSA). The influence of photodegradation on the protective power of GT nutracenticals against oxidative stress was thoroughly explored. Photodegradation of GT extracts was carried out and monitored using orthogonal stability‐indicating testing protocol; in vitro and in vivo assays. Total polyphenol content (TPC) and FRSA were determined spectrophotometrically while EGCG was selectively monitored using SPE‐HPLC. In vivo assessment of photodegraded samples was investigated via measuring a number of biomarkers for hepatic oxidative stress and apoptosis (caspase‐3, inducible nitric oxide synthase, nitric oxide, mitogen‐activated protein kinase, glutathione, thiobarbituric acid reactive substances, nuclear factor kappa beta, and nuclear factor erythroid 2‐related factor) as well as liver damage (alanine transaminase and aspartate transaminase) in serum of rats previously subjected to oxidative stress. Results showed complete degradation of EGCG in photodegraded green tea samples with no correlation with either TPC or FRSA. On the other hand, in vivo assay results revealed not only loss of activity but formation of harmful pro‐oxidants. Photostability was found crucial for the protective effect of GT extract against lead acetate insult. Results confirmed that careful design of quality control protocols requires correlation of chemical assays to bioassays to verify efficacy, stability, and most importantly safety of nutraceuticals.  相似文献   
999.
Climate change has emerged as one of the most complex challenges of the 21st century and has become an area of interest in the past few decades. Many countries of the world have become extremely vulnerable to the impacts of climate change. The scarcity of water is a serious concern for food security of these countries and climate change has aggravated the risks of extreme events like drought. Oxidative stress, caused by a variety of active oxygen species formed under drought stress, damages many cellular constituents, such as carbohydrates, lipids, nucleic acids and proteins, which ultimately reduces plant growth, respiration and photosynthesis. Se has become an element of interest to many biologists owing to its physiological and toxicological importance. It plays a beneficial role in plants by enhancing growth, reducing damage caused by oxidative stress, enhancing chlorophyll content under light stress, stimulating senesce to produce antioxidants and improving plant tolerance to drought stress by regulating water status. Researchers have adopted different strategies to evaluate the role of selenium in plants under drought stress. Some of the relevant work available regarding the role of Se in alleviating adverse effect of drought stress is discussed in this paper. © 2015 Society of Chemical Industry  相似文献   
1000.
Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu‐ankenda (ML) ethanolic extracts were evaluated using inhibition of α‐glucosidase and 2,2‐diphenyl‐l‐picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance (1H NMR) and ultra‐high performance liquid chromatography‐tandem mass spectrometric (UHPLC‐MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α‐glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using 1H‐NMR–based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various 1H‐NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in combinational therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号